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A numerical solution of the generalized eigenvalue problem for a system of linear ordinary 
differential equation using finite difference method is considered. It is shown how the 
zeroth order numerical approximation can be improved to give higher order accuracy. 
Further a scheme for locating all the eigenvalues in any given finite region in the complex 
plane is discussed. 

1. INTRODUCTION 

We consider the generalized eigenvalue problem for a general system of m first- 
order linear homogeneous ordinary differential equations 

subject to m linearly independent linear homogeneous boundary conditions of the 
form 

&@) Jw = 0, B&v Y(b) = 0, (4 

where y(t) is an m-vector, B(t, X) and C(r, A) are m x m matrices. B,(h) is an 1~~ x nz 
matrix of rank ml , while Bb(h) is an (m - ml) x m matrix of rank m - m, , t == a 
and t = b are the two end points, and we are looking for the solution in the interval 
[d, b]. Here h is a parameter to be determined in such a manner that the nontrivial 
solution of Eq. (I) satisfies the boundary conditions (2). All the functions involved 
are assumed to be continuous and differentiable to any order required. Further 
matrices, B, C, B, , and Bb are assumed to be polynomials in h of degree m, ,m2 , m3 , 

and mq , respectively, and r = Max(m, , IQ , m3, m4). For example, 

B(t, A) = B,(t) + hB,(t) -+ ... -I- h”‘lB,,l(t), 

where all Bi’s are m x m matrices independent of X. 
There are two types of simple methods for numerical solution of such problems. 

The first type based on the solution of initial value problem has been discussed by 
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Conte [I] and Antar [2], while the second type is the finite-difference method dis- 
cussed by Fox [3], Gary [4], and Keller [5]. In this paper we shall consider only the 
finite-difference methods by which the continuous eigenvalue problem may be trans- 
formed into a discrete problem. 

The finite-difference method suffers from two drawbacks. The first is that it requires 
an excessively large number of mesh points to get a reasonable accuracy, since the 
truncation errors involved are of the order of h2 or I/N2, where N is the number of 
intervals in the finite-difference scheme. To overcome this difficulty the use of more 
accurate difference schemes or the Richardson’s h + 0 extrapolation has been used 
(cf. Keller [5]). In this work we have used the explicit calculation of first-order 
difference corrections giving an accuracy of the order of h4 or 1/N4, which is sufficient 
for most purposes. This procedure has the advantage that very few extra calculations 
are required to obtain the first-order correction. 

The second difficulty arises from the iterative methods which are normally employed 
to determine the zeros of a determinant. These methods work well only if the approxi- 
mate location of zeros is known in advance. To overcome this problem we have used 
a method discussed by Delves and Lyness [6], which can determine all the eigenvalues 
in any given finite region of complex plane and does not require any previous 
knowledge about the eigenvalues. 

The generalized eigenvalue problem can arise in the solution of ordinary or partial 
differential equations especially when the Fourier transform is used. One comes across 
such problems in the study of linear stability analysis in the area of hydrodynamics. 
For example, for a polytropic fluid layer bounded by plane horizontal boundaries 
in the presence of uniform gravitational field acting in the z-direction if the infinitesi- 
mal pertubations are assumed to be of the form f(z) exp(ht + ikx), the linearized 
equations for optically thin disturbances come out to be (cf. Antia et al. [S]) 

Go W T”4Yh + 4) 7 = h” (1 - +) (POW - [h2@ + 4) + k2 TOW f 411 P, , 

7,(yXfd~=[(1 -~)-hr,(Yh+q)](PoW)-((X+q)P,, (3) 

where PO , p. , and To are respectively the pressure, density, and temperature in the 
zeroth-order steady state which are functions of z and PI , p1 , and T, are infinitesimal 
perturbations to these quantities, W is the velocity in vertical direction, and 
y = CJC, is the ratio of specific heats. The unperturbed quantities for the poly- 
tropic fluid with polytropic index I’ are given by 

To = 1 - ‘r;.‘z, P = par. (4) 

We shall discuss the numerical solution of this problem in Section 4. 
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2. THE DIFFERENCE APPROXIMATION 

The differential equation can be written in the form 

L(h) y(t) = qt, A) fy - C(t, A) y(t) = 0. (5) 

In the interval [a, b] we define a uniform mesh 

tj = a +,jh, j = 0, 1) 2 )...) N, h = (b - a)/N. 

At each point tj of the mesh we seek a vector uj which is to approximate v(tj), the 
solution of (l)-(2). The approximating net function {uj} is determined by the corre- 
sponding difference equation Lhui = 0. The central difference scheme is the simplest 
in which we approximate the differential equation by 

where 
tj-1,2 = tj - &h. 

This provides mN equations in m(N + 1) unknowns formed by components of uj 
(j = 0, 1, 2 )...) N). The remaining m equations are supplied by the boundary con- 
ditions 

WV uo = 0, B&i) UN = 0. (7) 

The system of Eqs. (6) and (7) can be written in the matrix form as AX = 0, by suitably 
defining the m(N + 1) x m(N + 1) matrix A. 

Now the problem has been reduced to solving a system of (N + 1) m linear homo- 
geneous algebraic equations in equal number of unknowns. Thus for nontrivial 
solutions to exist we must have det(A) = 0, and the zeros of det(A) will give the desired 
eigenvalues. For this purpose any root-finding method such as the Muller’s method 
or the secant iteration method can be used to determined the complex roots, while 
the real roots for which the determinant is also real can be located by looking for sign 
changes. In some cases, the successive minors of the determinant form a Sturm 
sequence which can be used to locate these roots very efficiently. The roots can then 
be accurately determined by appropriate coupling of methods of bisection and the 
secant iteration. The determinant for this purpose can be evaluated by using the 
usual Gaussian elimination method (cf. Wilkinson [7]). It is found that pivoting is 
not necessary in this process. 

However, the iterative methods used suffer from a serious drawback as it is essential 
to know the eigenvalues approximately, otherwise it is impossible for the iteration 
to converge in a reasonable number of attempts. For the hydrodynamic stability 
analysis it turns out that in the absence of dissipation (e.g., ~7 = 0 in Eq. (3)) the 
eigenvalues are real or purely imaginary, that is, h2 is always real. Such eigenvalues 
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can then be easily located by looking for sign changes since the determinant also 
can be written as a real function of X2. Further, since the dissipative effects are usually 
small, these eigenvalues serve as a fairly good approximation to the eigenvalues for 
the actual problem and can be very effectively used as starting values for the iterations. 
But in general it is not possible to get such approximations. For example, in the 
stability analysis of a polytropic fluid layer with a uniform horizontal magnetic field 
it is found that the “slow modes” cannot be computed by iterative methods even if 
a large number of iterations are carried out. In order to overcome such problems we 
have used a method described by Delves and Lyness [6], which is based on integration 
in the complex plane. This method can find out all the zeros of any analytic function 
in any given finite region of complex plane. For the present problem it can be easily 
seen that the determinant is an analytic function of X. However, this method also 
requires the derivative of the determinant with respec to h, which will clearly require 
a considerable amount of computation if it is directly evaluated and hence a numerical 
approximation to it is used. 

We have adopted square contours and Simpson’s one-third rule for evaluating 
the integrals. The derivative is approximated by using a five-point difference formula. 
Both of these processes give an accuracy of the order of hr4, where h, is the step length 
used in the integration (h, = 4a/M, where a is side of square contour and M is the 
number of points used to evaluate the integral). Starting from a value of M = 16 
we have used the Romberg integration to improve on the accuracy by evaluating the 
integral for a series of values of M in geometric progression with ratio 2. The cal- 
culations are contined until two successive approximations to the integral differ by 
less than a prescribed small constant. It should be noted that the approximation to 
the derivative introduces odd powers of hl in the asymptotic error expansion which 
renders the Romberg integration somewhat ineffective. Tn order to obtain a faster 
convergence of the integral it would be desirable to compute the derivative of the 
determinant explicitly. But for obtaining very high accuracy the use of this method 
would not be economical and is, in fact, not necessary since once the eigenvalues are 
approximately located, the iterative methods can be very efficiently used to get any 
desired accuracy. 

The number of eigenvalues of A will be at most (N + 1) ym, which is a finite number, 
while the actual problem has an infinite number of eigenvalues. Such a situation seems 
rather uncomfortable but as has been pointed out by Fox [3] and Keller [5], the lower 
eigenvalues are approximated quite accurately, while the higher eigenvalues are 
poorly represented. As will be seen in Section 3 the truncation error in approximating 
the eigenvalues is of same order as the local truncation error of the difference scheme, 
which for the central difference scheme considered here is (h2/24)(By”’ - 3Cy”). 
Now in physical problems the higher eigenfunctions have a larger number of nodes 
which imply very large derivatives. For example, if the eigenfunctions are of form 
sin(nt), then the truncation error which is of the order of h2n3 will increase rapidly 
with n. For values of IZ of the order of the number of points in the difference scheme 
the error will be embarassingly large. This is to be expected since in general the nth- 
order eigenfunction will have n nodes, which can never be approximated by any 
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numerical method involving a number of points which are of same order or less 
than n. 

For determining the eigenvector we use the inverse iteration method which is not 
directly applicable to the generalized eigenvalue problem. But if we have already 
determined h, to be the eigenvalue for the generalized eigenvalue problem, it can be 
easily shown that this method can be used to obtain the corresponding eigenvectors. 
Tn fact, it is found that in almost all cases we require only one iteration to obtain the 
eigenvector. 

It should be noted that the reduction to a first order system of differential equations 
generates a rather large matrix as compared to that for the equivalent system of higher 
order differential equations. However the band-width of the matrix will increase with 
the order of the differential equations involved. Further it is found that in problems 
of hydrodynamic stability the elimination of variables to get higher order equations 
introduces singularities in the resulting equations and so the numerical treatment 
becomes difficult. 

3. HIGHER-ORDER ACCURACY 

The simplest way for obtaining higher-order accuracy is probably the application 
of Richardson’s deferred approach to the limit or as it is also termed the h + 0 
extrapolation which has been discussed by Fox [3] and Keller [5]. In this method the 
eigenvalue problem is solved for a series of values of N, and the errors involved are 
eliminated by assuming it to be a power series in h. For the eigenvalue problem this 
necessitates an essentially complete repetition of all the work for each value of N, 
and the process is thus very time consuming. An alternative method is to use a more 
accurate difference scheme, but this increases the bandwidth of the matrix obtained. 
In the present work we have used explicit evaluation of difference corrections as 
given below, which requires very little additional calculations to obtain the first-order 
correction, and which is sufficiently good for most purposes. However, it is found that 
to obtain still higher-order accuracy with this method is not free from round-off 
errors and may not be even possible. 

By using the Taylor series we can write 

Lb(h) uj = L(h) uj + T?h(h) uj 9 (8) 

where Th(h) Uj gives the local truncation error at tj . For the central difference scheme 
used here we can expand Th(h) in a power series in terms of h”: 

where T,(h) is O(hzi). Similarly we can write the actual eigenvalue (1 and y(tj) in the 
form 

A =X,+h,+ . ..) .Y(rj> = ujO + ujl + “*t (10) 
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using 

Here U, is the eigenvector for the difference operator corresponding to the eigenalue 
A,, . If I’,, is the eigenvector of the transposed matrix for the difference problem for 
the same eigenvalue, then 

-Lcb) uo = 0, Lhr()G,) V. = 0 or Vo~L&4J = 0. (11) 

We shall obtain only the first-order corrections A, and U, to the eigenvalue and 
eigenvector, respectively; that is, we shall find U, and A, such that 

bL(& + w4l + Ul> = ~l@lJ Gl * (12) 

Retaining only the first-order terms we obtain, using (1 I), 

where 
(13) 

Multiply Eq. (13) from the left by V,,’ and use Eq. (11) to get 

Thus, we see that the first-order correction to the eigenvalue which gives an estimate 
of the truncation error is of same order as the local truncation error of the difference 
scheme, a result which has been rigorously proved by Keller [9] for the standard 
eigenvalue problem. However, to proceed beyond the first order we will require U, . 
But it will not be possible to solve Eq. (13) for U, since L,(h,) is a singular matrix. 
Equation (12) can be solved for (U, + U,) but to calculate U, from that will probably 
involve very large round-off errors. 

The calculation of A, requires the operator r,(A+,) and we outline a procedure to 
approximate it numerically. By using the Taylor series expansion about the point 
L1:2 3 we get 

h2 
Lh y = Ly + 24 (By”’ - 3Cy”) + so (By” - 5Cy”) (14) 

which yields 
h2 

Tl y = B (By”’ - 3Cy”), 

where all quantities are evaluated at h = 4 , t = tj-,,, . 
The derivatives y”(tjPlle) and y”‘(t?-,,,) can be calculated by using the four-point 

central difference approximation. But if that is used in (14), then the additional error 
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introduced is roughly 10 times the error term (hj/l920)(By~ - 5Cyiv). Thus it would 
be better to use the six-point central difference approximation for y” and y”‘. At the 
boundaries, of course, the central difference cannot be used and the one-sided 
difference should be used. The use of the one-sided difference can be avoided by com- 
puting at points outside the range [a, b]. This dodge may be useful for the two-point 
boundary value problem, but it appears that for the eigenvalue problem it may not 
be any simpler than the use of the one-sided difference, especially when the number of 
equations is large. 

The evaluation of eigenvectors requires very little calculation, as in the process of 
finding the eigenvalues the determinant is already evaluated at the required value of X. 
The triangular decomposition obtained in that process can be effectively used to 
calculate both U0 and V,, , without any additional computation of the coefficients, 
etc. Further, if the eigenvalues are obtained to a good accuracy, then it requires only 
a single iteration to get the eigenvectors. Only additional calculation is required to 
obtain the truncation error and the derivative matrix for the problem, which is roughly 
equivalent to evaluating the determinant for a single value of h. Thus, the additional 
computation needed in this process is an order of magnitude less than that for 
evaluating the eigenvalues, which requires several iterations. Besides we obtain 
eigenvectors as a by-product of this calculation which are very useful in some physi- 
cal problems. 

4. NUMERICAL EXAMPLE AND DISCUSSION 

We shall illustrate the working of the method presented above with a rather simple 
example, that of an isothermal fluid layer bounded by plane horizontal boundaries 
at z = 0 and z = 1. As can be seen from Eq. (4) if r = 1, the temperature r,, is 
constant and we have an isothermal fluid layer. Further, for such a problem all the 
coefficients of the equation are constant and hence an exact analytical solution can 
be written. We have chosen rigid boundary conditions p. W = 0 at z = 0 and z = 1. 
The analytical solutions are of the form p. W = exp(-hz) sin(mnz), where m is an 
integer. With different values of m we obtain different modes starting from 
F-mode(m = 1) and the eigenvalues obtained by the above method can be compared 
with exact values obtained separately. The parameters for this problem are chosen 
as follows: y = 0.9; q = 0.05284; k = 1.000. 

Table I shows the eigenvalues obtained without applying the difference correction 
for various values of N (the number of intervals in the difference scheme). Table I 
gives the eigenvalues for the first four acoustic modes, namely, F, Pl, P2, and P3. 
The first line gives the exact eigenvalues which can be compared with the calculated 
values. It can be seen that the error is roughly proportional to Pm3 or m3/N2. Table II 
lists the eigenvalues after applying difference corrections and it can be seen that the 
error is roughly proportional to h4m5 or m5jN4. The most remarkable feature of this 
computation is that for N = 100 the lowest eigenvalue is accurate up to eight digits. 
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Here we have used only single precision complex arithmetic on DEC-10 computer 
which gives an accuracy of roughly 1 part in lo*. This clearly demonstrates that 
the computations involved are free from round-off errors. The eigenvectors obtained 
in this process are also compared with exact values. When the eigenvectors are nor- 
malized to get a maximum value of one, the maximum error for the F-mode is approxi- 
mately 6 x 1O-5 for N = 100 and increases to roughly 1O-3 for the P3-mode. For 
N = 50 the errors are higher by a factor of 2-4. 

This equation also has a series of real eigenvalues known as the convective modes. 
The interesting feature about these eigenvalues is that they have a limit point at h = 0 
and so a denumerably infinite number of eigenvalues are concentrated in a small 
region around h = 0. It is found that as long as we are reasonably away from the limit 
point no serious problem is caused by it. To illustrate this we have used the method 
to locate eigenvalues in the region around the positive real axis and the results shown 
in Table III are obtained by using 51 mesh points (N = 50). The second and third 

TABLE III 

Convective Modes for Isothermal Atmosphere; 
CD/C,, = 0.900, q = 5.284E-2, k = 1.000 

m 
-. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

a 

7.4777205E-2 
3.0487608E-2 
1.636983OE-2 
l.O046688E-2 
6.7387404E-3 
4.7885919E-3 
3.5641736E-3 
2.733 198OE-3 
2,1621888E-3 
1,7399815E-3 

b 

5.039416OE-8 
-6.0187963E-7 

1.2198290E-6 
-3.1363919E-5 

8.8413436F5 
-5.7117014E-5 
-5.8921154E-7 

1.4461245E-6 
-8.5610199E-7 
-1.4326302E-9 

7.4775927E-2 
3.0502161E-2 
I .6340423 E-2 
1.0047383 E-2 
6.7345953E-3 
4.7919952E-3 
3.5622970E-3 
2.7377670E-3 
2.1594956E-3 
I .7390473E-3 

d 

7.48017828-2 
3.0559207E-2 
1.6418595E-2 
l.O139474E-2 
6.8358423E-3 
4.8993522E-3 
3.6738012E-3 
2.8521128E-3 
2.2757756E-3 
I .8565983E-3 

e 

7,480177045E-2 
3.055914993E-2 
1.641845333E-2 
1 .013923383E-2 
6.835505908E-3 
4.898939746E-3 
3.673346992E-3 
2,851666494E-3 
2,275401970E-3 
1.856377146E-3 

asb Real and imaginary parts of eigenvalues as located by the search routine. 
c Real eigenvalues as refined by secant iteration. 
d Real eigenvalues after applying difference correction. 
* Exact value of the eigenvalues. 

columns give the real and imaginary parts of the eigenvalues as located by the search 
routine using 512 points for evaluating the integrals. The search routine is used only 
for illustration, as it is clear that in this case eigenvalues can be located much more 
efficiently by just looking for sign changes. The fourth column contains the same real 
eigenvalues as refined by the secant iteration method which is used to improve on 
the values located earlier. The fifth column gives the same eigenvalues after applying 
the difference correction. It can be seen that despite the proximity of the limit point 
the search routine gives a reasonable accuracy of about three or four significant 
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digts, which is more than enough for the iterative methods to converge very fast to 
any desired accuracy permissible by the round-off errors. It may also be seen that the 
difference correction is very effective in improving the accuracy of eigenvalues. The 
corrected eigenvalues have an accuracy of better than 1 part in IO4 even for the tenth 
eigenvalue which is very close to the limit point. 

For a standard eigenvalue problem of the form LJ~ = hy, where L is a linear 
differential operator and y is a scalar variable, it is known that there are at most a 
denumerably infinite number of eigenvalues with no finite limit point. For the 
generalized eigenvalue problem again the number of eigenvalues will be at most 
denumerably infinite but in general they can have a finite limit point. This is true for 
most of the generalized eigenvalue problems which we encounter in hydrodynamic 
stability analysis. Thus, for example, for the isothermal fluid layer without dissipation 
(q = 0 in (3)) one of the series of eigenvalues is given by 

A 2 _ (k” + a + m2+9 y 
m 2 [---I + (1 + y2(kPy(l ; ;2n2)2 )1j2]. 

Clearly h + 0 as m -+ co and it is evident that the series has a limit point at h = 0. 
In such cases there can be an infinite number of eigenvalues in a finite region of the 
complex plane and the method described above will run into difficulty if the region 
to be searched contains, or passes very close to, the limit point. Of course, the finite- 
difference operator will always have a finite number of eigenvalues but the nearer we 
approach the limit point the determination of the eigenvalues will become more and 
more unreliable because of high truncation errors. As we have already demonstrated 
even in such cases the eigenvalues computed are fairly reliable as long as the order 
of eigenvalues computed is reasonably small compared to the number of mesh points 
used in the difference scheme. 

Admittedly the illustration used here is for an equation with constant coefficients, 
but we have applied this method successfully for equations with variable coefficients 
and the results are in perfect agreement with those obtained by others. To give an 
example we have used this method for determining all three eigenvalues corresponding 
to the symmetric stream function of the Orr-Sommerfeld equation for the plane 
Poiseuille flow (cf. Antar [2]) in the square 0 < h, < 0.4, -0.4 < h, ,< 0.0. This 
equation provides a standard eigenvalue problem for a fourth-order differential 
equation. Recently, this problem has been solved numerically by a number of workers 
with whom it is possible to compare our results. We have compared our results with 
Mack [lo], who has tabulated 32 known eigenvalues of this equation for symmetric 
stream functions and for disturbance wave number 01 = 1, and the Reynolds number 
R = 10,000, which lie in the rectangle 0 < h, < 1.0, -I .l < hi < 0. The results 
are displayed in Table IV. Here, we have used 101 mesh points (N = 100) and the 
search routine used 512 points to evaluate the integrals. It can be seen that the results 
are in very good agreement with Mack [lo] and despite the extremely high value 
of the Reynolds number R, it requires only 101 mesh points to get an accuracy of 10-5. 

The method described in this paper gives a very practical approach for calculating 
eigenvalues and eigenvectors for differential operators. On an average it takes about 
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TABLE IV 

Eigenvalues for Orr-Sommerfeld Equation of Plane Poiseuille Flow; 
Wave Number = 1.000; Reynolds Number = 10000 

a b C d e J R II 

- 

0.192413 -0.182600 0.192172 -0.182541 0.190054 -0.182810 0.19006 -0.18282 

0.351707 0.121757 0.351991 -0.121705 0.349098 -0.124498 0.34911 -0.12450 

0.373708 -0.235530 0.373628 -0.235704 0.368463 -0.238777 0.36850 -0.23882 

a~* Real and imaginary parts of eigenvalues as located by the search routine. 
c*d Real and imaginary parts of eigenvalues as refined by secant iteration. 
elf Real and imaginary parts of eigenvalues after applying difference correction. 
g*h Real and imaginary parts of eigenvalues as tabulated by Mack [lo]. 

l-2 sec. of CPU time on a DEC-10 computer to compute one complex eigenvalue 
for Eq. (3) by using iterative methods with 51 mesh points, while the search routine 
requires about lo-20 times more CPU time. Thus, it is clear that the search routine 
is useful only when the usual methods have failed. It is found that for integrals in the 
search routine to converge the size of square contour should be sufficiently small; 
the actual limit depending on the equation under consideration. As an example, 
the three eigenvalues of the Orr-Sommerfeld equation were determined by using the 
square contour with side 0.4, while for magnetohydrodynamic slow modes it is found 
that the size of square has to be less than about 0.1. Despite these limitations the search 
routine has to be used in such cases since other methods fail completely. Under such 
circumstances the iteration fails to converge even if the starting value differs by only 
0.01 from the actual eigenvalue. 

However, a word of caution is necessary since in this method we actually locate 
the eigenvalues of the finite-difference operator rather than that of the original 
differential operator. Hence, if an attempt is made to locate the higher-order eigen- 
values which are not very accurately represented by the difference operator, the results 
would be obviously unreliable. We expect this method to be applicable to even more 
generalized class of eigenvalue problems, where the coefficients of the differential 
equations are, in general, analytic functions of h. There is, of course, no question of 
using this method for locating eigenvalues in an infinite region of the complex plane, 
which would be of great interest to physicists, especially for settling the question of 
the existence of eigenvalues in the complex half-plane. 
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